Teaching students to use Decision trees (Dt) for unstructured data
نویسندگان
چکیده
The research aims to analyze the importance of teaching use unstructured data methods that students generate from learning activities and examine relative efficiency decision trees within load conditions self-efficacy each learner. present collected using a questionnaire cognitive among students. sample included 150 divided into two groups. revealed no significant differences in between groups participants (F = 0.01, p> 0.05). According results, were identified who worked with those analyzed association rules. uses an independent t-test for analysis academic environment. No detected concerning participants. Keywords: data, trees, rules, self-efficacy, load, SDGs.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملUsing Decision Trees to Understand Student Data
We apply and evaluate a decision tree algorithm to university records, producing human-readable graphs that are useful both for predicting graduation, and understanding factors that lead to graduation. We compare this method to that of nueral networks, Support Vector Machines, and Kernel Regression, and show that it is equally powerful as a classificaion tool. At the same time, decision trees p...
متن کاملDecision Trees for handling Uncertain Data to identify bank Frauds
Classification is a classical problem in machine learning and data mining. In traditional decision tree classification, a feature of a tuple is either categorical or numerical. The decision tree algorithms are used for classify the certain and numerical data for many applications. In existing system they implement the extended the model of decision tree classification to accommodate data tuple ...
متن کاملDeveloping Decision Trees for Handling Uncertain Data
Classification is one of the most efficient and widely used data mining technique. In classification, Decision trees can handle high dimensional data, and their representation is intuitive and generally easy to assimilate by humans. Decision trees handle the data whose values are certain. We extend such classifiers i.e, decision trees to handle uncertain information. Value uncertainty arises in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: World Journal on Educational Technology
سال: 2022
ISSN: ['1309-1506', '1309-0348']
DOI: https://doi.org/10.18844/wjet.v14i5.7335